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Abstract

In this report, we consider a theory of gravity with a metric-dependent torsion namely

the F (R, T ) gravity, where R is the curvature scalar and T is the torsion scalar. We study

the geometric root of such theory. In particular we give the derivation of the model from the

geometrical point of view. Then we present the more general form of F (R, T ) gravity with

two arbitrary functions and give some of its particular cases. In particular, the usual F (R)

and F (T ) gravity theories are particular cases of the F (R, T ) gravity. In the cosmological

context, we find that our new gravitational theory can describe the accelerated expansion of

the Universe.
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1 Introduction

In the last years the interest in modified gravity theories like F (R) and F (G)-gravity as alternatives
to the ΛCDM Model grew up. Recently, a new modified gravity theory, namely the F (T )-theory,
has been proposed. This is a generalized version of the teleparallel gravity originally proposed
by Einstein [13]-[24]. It also may describe the current cosmic acceleration without invoking dark
energy. Unlike the framework of GR, where the Levi-Civita connection is used, in teleparallel
gravity (TG) the used connection is the Weitzenböck’one. In principle, modification of gravity
may contain a huge list of invariants and there is not any reason to restrict the gravitational
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theory to GR, TG, F (R) gravity and/or F (T ) gravity. Indeed, several generalizations of these
theories have been proposed (see e.g. the quite recent review [9]). In this paper, we study some
other generalizations of F (R) and F (T ) gravity theories. At the beginning, we briefly review the
formalism of F (R) gravity and F (T ) gravity in Friedmann-Robertson-Walker (FRW) universe.
The flat FRW space-time is described by the metric

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (1.1)

where a = a(t) is the scale factor. The orthonormal tetrad components ei(x
µ) are related to the

metric through
gµν = ηije

i
µej

ν , (1.2)

where the Latin indices i, j run over 0...3 for the tangent space of the manifold, while the Greek
letters µ, ν are the coordinate indices on the manifold, also running over 0...3.

F (R) and F (T ) modified theories of gravity have been extensively explored and the possibility
to construct viable models in their frameworks has been carefully analyzed in several papers (see
[9] for a recent review). For such theories, the physical motivations are principally related to the
possibility to reach a more realistic representation of the gravitational fields near curvature singu-
larities and to create some first order approximation for the quantum theory of gravitational fields.
Recently, it has been registred a renaissance of F (R) and F (T ) gravity theories in the attempt to
explain the late-time accelerated expansion of the Universe [9].

PROBLEM:

Construct such F (R, T ) gravity which contents F (R) gravity and F (T ) gravity as par-

ticular cases.

In the modern cosmology, in order to construct (generalized) gravity theories, three quantities
– the curvature scalar, the Gauss –Bonnet scalar and the torsion scalar – are usually used (about
our notations see below):

Rs = gµνRµν , (1.3)

Gs = R2 − 4RµνRµν + RµνρσRµνρσ, (1.4)

Ts = Sρ
µν T ρ

µν . (1.5)

In this paper, our aim is to replace these quantities with the other three variables in the form

R = u + gµνRµν , (1.6)

G = w + R2 − 4RµνRµν + RµνρσRµνρσ, (1.7)

T = v + Sρ
µν T ρ

µν , (1.8)

where u = u(xi; gij , ˙gij , g̈ij , ...; fj), v = v(xi; gij , ˙gij , g̈ij , ...; gj) and w = w(xi; gij , ˙gij , g̈ij , ...;hj) are
some functions to be defined. As a result, we obtain some generalizations of the known modified
gravity theories. With the FRW metric ansatz the three variables (1.3)-(1.5) become

Rs = 6(Ḣ + 2H2), (1.9)

Gs = 24H2(Ḣ + H2), (1.10)

Ts = −6H2, (1.11)

where H = (ln a)t. In the contrast, in this paper we will use the following three variables

R = u + 6(Ḣ + 2H2), (1.12)

G = w + 24H2(Ḣ + H2), (1.13)

T = v − 6H2. (1.14)

Finally we would like to note that we expect w = w(u, v). This paper is organized as follows. In
Sec. 2, we briefly review the formalism of F (R) and F (T )-gravity for FRW metric. In particular,
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the corresponding Lagrangians are explicitly presented. In Sec. 3, we consider F (R, T ) theory,
where R and T will be generalized with respect to the usual notions of curvature scalar and torsion
scalar. Some reductions of F (R, T ) gravity are presented in Sec. 4. In Sec. 5, the specific
model F (R, T ) = µR + νT is analized and in Sec. 6 the exact power-law solution is found; some
cosmological implications of the model will be here discussed. The Bianchi type I version of F (R, T )
gravity is considered in Sec. 7. Sec. 8 is devoted to some generalizations of some modified gravity
theories. Final conclusions and remarks are provided in Sec. 9.

2 Preliminaries of F (R), F (G) and F (T ) gravities

At the beginning, we present the basic equations of F (R), F (T ) and F (G) modified gravity theories.
For simplicity we mainly work in the FRW spacetime.

2.1 F (R) gravity

The action of F (R) theory is given by

SR =

∫

d4xe[F (R) + Lm], (2.1)

where R is the curvature scalar. We work with the FRW metric (1.1). In this case R assumes the
form

R = Rs = 6(Ḣ + 2H2). (2.2)

The action we rewrite as

SR =

∫

dtLR, (2.3)

where the Lagrangian is given by

LR = a3(F − RFR) − 6FRaȧ2 − 6FRRṘa2ȧ − a3Lm. (2.4)

The corresponding field equations of F (R) gravity read

6ṘHFRR − (R − 6H2)FR + F = ρ, (2.5)

−2Ṙ2FRRR + [−4ṘH − 2R̈]FRR + [−2H2 − 4a−1ä + R]FR − F = p, (2.6)

ρ̇ + 3H(ρ + p) = 0. (2.7)

2.2 F (T ) gravity

In the modified teleparallel gravity, the gravitational action is

ST =

∫

d4xe[F (T ) + Lm], (2.8)

where e = det (ei
µ) =

√−g , and for convenience we use the units 16πG = ~ = c = 1 throughout.
The torsion scalar T is defined as

T ≡ Sρ
µν T ρ

µν , (2.9)

where

T ρ
µν ≡ −e

ρ
i

(

∂µei
ν − ∂νei

µ

)

, (2.10)

Kµν
ρ ≡ −1

2
(Tµν

ρ − T νµ
ρ − Tρ

µν) , (2.11)

Sρ
µν ≡ 1

2

(

Kµν
ρ + δµ

ρ T θν
θ − δν

ρT θµ
θ

)

. (2.12)

For a spatially flat FRW metric (1.1), as a consequence of equations (3.9) and (1.1), we have that
the torsion scalar assumes the form

T = Ts = −6H2. (2.13)
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The action (3.8) can be written as

ST =

∫

dtLT , (2.14)

where the point-like Lagrangian reads

LT = a3 (F − FT T ) − 6FT aȧ2 − a3Lm. (2.15)

The equations of F(T) gravity look like

12H2FT + F = ρ, (2.16)

48H2FTT Ḣ − FT

(

12H2 + 4Ḣ
)

− F = p, (2.17)

ρ̇ + 3H(ρ + p) = 0. (2.18)

2.3 F (G) gravity

The action of F (G) theory is given by

SG =

∫

d4xe[F (G) + Lm], (2.19)

where the Gauss – Bonnet scalar G for the FRW metric is

G = Gs = 24H2(Ḣ + H2). (2.20)

3 Geometrical roots of F (R, T ) gravity

We start from the M43 - model (about our notations, see e.g. Refs. [10]-[11]). This model is one
of the representatives of F (R, T ) gravity. The action of the M43 - model reads as

S43 =

∫

d4x
√−g[F (R, T ) + Lm],

R = Rs = ε1g
µνRµν , (3.1)

T = Ts = ε2Sρ
µν T ρ

µν ,

where Lm is the matter Lagrangian, εi = ±1 (signature), R is the curvature scalar, T is the torsion
scalar (about our notation see below). In this section we try to give one of the possible geometric
formulations of M43 - model. Note that we have different cases related with the signature: (1)
ε1 = 1, ε2 = 1; (2) ε1 = 1, ε2 = −1; (3) ε1 = −1, ε2 = 1; (4) ε1 = −1, ε2 = −1. Also note that M43 -
model is a particular case of M37 - model having the form

S37 =

∫

d4x
√−g[F (R, T ) + Lm],

R = u + Rs = u + ε1g
µνRµν , (3.2)

T = v + Ts = v + ε2Sρ
µν T ρ

µν ,

where
Rs = ε1g

µνRµν , Ts = ε2Sρ
µν T ρ

µν (3.3)

are the standard forms of the curvature and torsion scalars.

3.1 General case

To understand the geometry of the M43 - model, we consider some spacetime with the curvature
and torsion so that its connection Gλ

µν is a sum of the curvature and torsion parts. In this paper,
the Greek alphabets (µ, ν, ρ, ... = 0, 1, 2, 3) are related to spacetime, and the Latin alphabets
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(i, j, k, ... = 0, 1, 2, 3) denote indices, which are raised and lowered with the Minkowski metric ηij

= diag (−1,+1,+1,+1). For our spacetime the connection Gλ
µν has the form

Gλ
µν = ei

λ∂µei
ν + ej

λei
νωj

iµ = Γλ
µν + Kλ

µν . (3.4)

Here Γj
iµ is the Levi-Civita connection and K

j
iµ is the contorsion. Let the metric has the form

ds2 = gijdxidxj . (3.5)

Then the orthonormal tetrad components ei(x
µ) are related to the metric through

gµν = ηije
i
µej

ν , (3.6)

so that the orthonormal condition reads as

ηij = gµνe
µ
i eν

j . (3.7)

Here ηij = diag(−1, 1, 1, 1), where we used the relation

ei
µe

µ
j = δi

j . (3.8)

The quantities Γj
iµ and K

j
iµ are defined as

Γl
jk =

1

2
glr{∂kgrj + ∂jgrk − ∂rgjk} (3.9)

and

Kλ
µν = −1

2

(

Tλ
µν + Tµν

λ + Tνµ
λ
)

, (3.10)

respectively. Here the components of the torsion tensor are given by

Tλ
µν = ei

λT i
µν = Gλ

µν − Gλ
νµ, (3.11)

T i
µν = ∂µei

ν − ∂νei
µ + Gi

jµej
ν − Gi

jνej
µ. (3.12)

The curvature Rρ
σµν is defined as

Rρ
σµν = ei

ρej
σRi

jµν = ∂µGρ
σν − ∂νGρ

σµ + Gρ
λµGλ

σν − Gρ
λνGλ

σµ

= R̄ρ
σµν + ∂µKρ

σν − ∂νKρ
σµ + Kρ

λµKλ
σν − Kρ

λνKλ
σµ

+Γρ
λµKλ

σν − Γρ
λνKλ

σµ + Γλ
σνKρ

λµ − Γλ
σµKρ

λν , (3.13)

where the Riemann curvature of the Levi-Civita connection is defined in the standard way

R̄ρ
σµν = ∂µΓρ

σν − ∂νΓρ
σµ + Γρ

λµΓλ
σν − Γρ

λνΓλ
σµ. (3.14)

Now we introduce two important quantities namely the curvature (R) and torsion (T ) scalars as

R = gijRij , (3.15)

T = Sµν
ρ T ρ

µν , (3.16)

where

Sρ
µν =

1

2

(

Kρ
µν + δµ

ρ Tθ
θν − δν

ρTθ
θµ

)

. (3.17)

Then the M43 - model we write in the form (3.1). To conclude this subsection, we note that in
GR, it is postulated that Tλ

µν = 0 and such 4-dimensional spacetime manifolds with metric and
without torsion are labelled as V4. At the same time, it is a general convention to call U4, the
manifolds endowed with metric and torsion.
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3.2 FRW case

From here we work with the spatially flat FRW metric

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (3.18)

where a(t) is the scale factor. In this case, the non-vanishing components of the Levi-Civita
connection are

Γ0

00
= Γ0

0i = Γ0

i0 = Γi
00

= Γi
jk = 0,

Γ0

ij = a2Hδij , (3.19)

Γi
jo = Γi

0j = Hδi
j ,

where H = (ln a)t and i, j, k, ... = 1, 2, 3. Now let us calculate the components of torsion tensor.
Its non-vanishing components are given by:

T110 = T220 = T330 = a2h,

T123 = T231 = T312 = 2a3f, (3.20)

where h and f are some real functions (see e.g. Refs. [12]). Note that the indices of the torsion
tensor are raised and lowered with respect to the metric, that is

Tijk = gklTij
l. (3.21)

Now we can find the contortion components. We get

K1
10 = K2

20 = K3
30 = 0,

K1
01 = K2

02 = K3
03 = h,

K0
11 = K0

22 = K0
22 = a2h, (3.22)

K1
23 = K2

31 = K3
12 = −af,

K1
32 = K2

13 = K3
21 = af.

The non-vanishing components of the curvature Rρ
σµν are given by

R0
101 = R0

202 = R0
303 = a2(Ḣ + H2 + Hh + ḣ),

R0
123 = −R0

213 = R0
312 = 2a3f(H + h),

R1
203 = −R1

302 = R2
301 = −a(Hf + ḟ),

R1
212 = R1

313 = R2
323 = a2[(H + h)2 − f2]. (3.23)

Similarly, we write the non-vanishing components of the Ricci curvature tensor Rµν as

R00 = −3Ḣ − 3ḣ − 3H2 − 3Hh,

R11 = R22 = R33 = a2(Ḣ + ḣ + 3H2 + 5Hh + 2h2 − f2). (3.24)

At the same time, the non-vanishing components of the tensor Sµν
ρ are given by

S10

1
=

1

2

(

K10

1
+ δ1

1
T θ0

θ − δ0

1
T θν

θ

)

=
1

2
(h + 2h) = h, (3.25)

S10

1
= S20

2
= S30

3
= 2h, (3.26)

S23

1
=

1

2

(

K23

1
+ δ2

1
+ δ3

1

)

= − f

2a
, (3.27)

S23

1
= S31

2
= S21

3
= − f

2a
(3.28)

and

T = T 1

10
S10

1
+ T 2

20
S20

2
+ T 3

30
S30

3
+ T 23

1
S1

23
+ T 2

31
S31

2
+ T 3

12
S12

3
. (3.29)
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Now we are ready to write the explicit forms of the curvature and torsion scalars. We have

R = 6(Ḣ + 2H2) + 6ḣ + 18Hh + 6h2 − 3f2 (3.30)

T = 6(h2 − f2). (3.31)

So finally for the FRW metric, the M43 - model takes the form

S43 =

∫

d4x
√−g[F (R, T ) + Lm],

R = 6(Ḣ + 2H2) + 6ḣ + 18Hh + 6h2 − 3f2, (3.32)

T = 6(h2 − f2).

It (that is the M43 - model) is one of geometrical realizations of F (R, T ) gravity in the sense that
it was derived from the purely geometrical point of view.

4 Lagrangian formulation of F (R, T ) gravity

Of course, we can work with the form (3.32) of F (R, T ) gravity. But a more interesting and general
form of F (R, T ) gravity is the so-called M37 - model. The action of the M37 - gravity reads as [10]

S37 =

∫

d4x
√−g[F (R, T ) + Lm],

R = u + Rs = u + 6ε1(Ḣ + 2H2), (4.1)

T = v + Ts = v + 6ε2H
2,

where
Rs = 6ε1(Ḣ + 2H2), Ts = 6ε2H

2. (4.2)

So we can see that here instead of two functions h and f in (3.32), we introduced two new functions
u and v. For example, for (3.32) these functions have the form

u = 6(1 − ε1)(Ḣ + 2H2) + 6ḣ + 18Hh + 6h2 − 3f2, (4.3)

v = 6(h2 − f2 − ε2H
2) (4.4)

that again tells us that the M43 - model is a particular case of M37 - model [Note that if ε1 = 1 = ε2
we have u = 6ḣ + 18Hh + 6h2 − 3f2, v = 6(h2 − f2 −H2)]. But in general we think (or assume)
that u = u(t, a, ȧ, ä,

...
a , ...; fi) and v = v(t, a, ȧ, ä,

...
a , ...; gi), while fi and gi are some unknown

functions related with the geometry of the spacetime. So below we will work with a more general
form of F (R, T ) gravity namely the M37 - gravity (4.1). Introducing the Lagrangian multipliers
we now can rewrite the action (4.1) as

S37 =

∫

dt a3

{

F (R, T ) − λ

[

T − v − 6ε2
ȧ2

a2

]

− γ

[

R − u − 6ε1

(

ä

a
+

ȧ2

a2

)]

+ Lm

}

, (4.5)

where λ and γ are Lagrange multipliers. If we take the variations with respect to T and R of this
action, we get

λ = FT , γ = FR. (4.6)

Therefore, the action (4.5) can be rewritten as

S37 =

∫

dt a3

{

F (R, T ) − FT

[

T − v − 6ε2
ȧ2

a2

]

− FR

[

R − u − 6ε1

(

ä

a
+

ȧ2

a2

)]

+ Lm

}

. (4.7)

Then the corresponding point-like Lagrangian reads

L37 = a3[F − (T − v)FT − (R−u)FR + Lm]− 6(ε1FR − ε2FT )aȧ2 − 6ε1(FRRṘ + FRT Ṫ )a2ȧ. (4.8)
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As is well known, for our dynamical system, the Euler-Lagrange equations read as

d

dt

(

∂L37

∂Ṙ

)

− ∂L37

∂R
= 0, (4.9)

d

dt

(

∂L37

∂Ṫ

)

− ∂L37

∂T
= 0, (4.10)

d

dt

(

∂L37

∂ȧ

)

− ∂L37

∂a
= 0. (4.11)

Hence, using the expressions

∂L37

∂Ṙ
= −6ε1FRRa2ȧ, (4.12)

∂L37

∂Ṫ
= −6ε1FRT a2ȧ, (4.13)

∂L37

∂ȧ
= −12(ε1FR − ε2FT )aȧ − 6ε1(FRRṘ + FRT Ṫ + FRψψ̇)a2 + a3FT vȧ + a3FRuȧ, (4.14)

we get

a3FTT

(

T − v − 6ε2
ȧ2

a2

)

= 0, (4.15)

a3FRR

(

R − u − 6ε1(
ä

a
+

ȧ2

a2
)

)

= 0, (4.16)

U + B2FTT + B1FT + C2FRRT + C1FRTT + C0FRT + MF + 6ε2a
2p = 0, (4.17)

respectively. Here

U = A3FRRR + A2FRR + A1FR, (4.18)

A3 = −6ε1Ṙ
2a2, (4.19)

A2 = −12ε1Ṙaȧ − 6ε1R̈a2 + a3Ṙuȧ, (4.20)

A1 = 12ε1ȧ
2 + 6ε1aä + 3a2ȧuȧ + a3u̇ȧ − a3ua, (4.21)

B2 = 12ε2Ṫ aȧ + a3Ṫ vȧ, (4.22)

B1 = 24ε2ȧ
2 + 12ε2aä + 3a2ȧvȧ + a3v̇ȧ − a3va, (4.23)

C2 = −12ε1a
2ṘṪ , (4.24)

C1 = −6ε1a
2Ṫ 2, (4.25)

C0 = −12ε1Ṫ aȧ + 12ε2Ṙaȧ − 6ε1a
2T̈ + a3Ṙvȧ + a3Ṫ uȧ, (4.26)

M = −3a2. (4.27)

If FRR 6= 0, FTT 6= 0, from Eqs. (4.17) and (4.17), it is easy to find that

R = u + 6ε1(Ḣ + 2H2), T = v + 6ε2H
2, (4.28)

so that the relations (4.1) are recovered. Generally, these equations are the Euler constraints of
the dynamics. Here a,R, T are the generalized coordinates of the configuration space. On the
other hand, it is also well known that the total energy (Hamiltonian) corresponding to Lagrangian
L37 is given by

H37 =
∂L37

∂ȧ
ȧ +

∂L37

∂Ṙ
Ṙ +

∂L37

∂Ṫ
Ṫ − L37. (4.29)

Hence using (4.12)-(4.14) we obtain

H37 = [−12(ε1FR − ε2FT )aȧ − 6ε1(FRRṘ + FRT Ṫ + FRψψ̇)a2 + a3FT vȧ + a3FRuȧ]ȧ

−6ε1FRRa2ȧṘ − 6ε1FRT a2ȧṪ − [a3(F − TFT − RFR + vFT + uFR + Lm)−
6(ε1FR − ε2FT )aȧ2 − 6ε1(FRRṘ + FRT Ṫ + FRψψ̇)a2ȧ]. (4.30)
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Let us rewrite this formula as

H37 = D2FRR + D1FR + JFRT + E1FT + KF + 2a3ρ, (4.31)

where

D2 = −6ε1Ṙa2ȧ, (4.32)

D1 = 6ε1aä + a3uȧȧ, (4.33)

J = −6ε1a
2ȧṪ , (4.34)

E1 = 12ε2aȧ2 + a3vȧȧ, (4.35)

K = −a3. (4.36)

As usual we assume that the total energy H37 = 0 (Hamiltonian constraint). So finally we have
the following equations of the M37 - model [10]-[11]:

D2FRR + D1FR + JFRT + E1FT + KF = −2a3ρ,

U + B2FTT + B1FT + C2FRRT + C1FRTT + C0FRT + MF = 6a2p, (4.37)

ρ̇ + 3H(ρ + p) = 0.

It deserves to note that the M37 - model (4.1) admits some interesting particular and physically
important cases. Some particular cases are now presented.

i) The M44 - model. Let the function F (R, T ) be independent from the torsion scalar T :
F = F (R, T ) = F (R). Then the action (4.1) acquires the form

S44 =

∫

d4xe[F (R) + Lm], (4.38)

where
R = u + Rs = u + ε1g

µνRµν , (4.39)

is the curvature scalar. It is the M44 - model. We work with the FRW metric. In this case R takes
the form

R = u + 6ε1(Ḣ + 2H2). (4.40)

The action can be rewritten as

S44 =

∫

dtL44, (4.41)

where the Lagrangian is given by

L44 = a3[F − (R − u)FR + Lm] − 6ε1FRaȧ2 − 6ε1FRRṘa2ȧ. (4.42)

The corresponding field equations of the M44 - model read as

D2FRR + D1FR + KF = −2a3ρ,

A3FRRR + A2FRR + A1FR + MF = 6a2p, (4.43)

ρ̇ + 3H(ρ + p) = 0.

Here

D2 = −6ε1Ṙa2ȧ, (4.44)

D1 = 6ε1a
2ä + a3uȧȧ, (4.45)

K = −a3 (4.46)

and

A3 = −6ε1Ṙ
2a2, (4.47)

A2 = −12ε1Ṙaȧ − 6ε1R̈a2 + a3Ṙuȧ, (4.48)

A1 = 12ε1ȧ
2 + 6ε1aä + 3a2ȧuȧ + a3u̇ȧ − a3ua, (4.49)

M = −3a2. (4.50)
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If u = 0 then we get the following equations of the standard F (Rs) gravity (after R = Rs):

6ṘHFRR − (R − 6H2)FR + F = ρ, (4.51)

−2Ṙ2FRRR + [−4ṘH − 2R̈]FRR + [−2H2 − 4a−1ä + R]FR − F = p, (4.52)

ρ̇ + 3H(ρ + p) = 0. (4.53)

ii) The M45 - model. The action of the M45 - model looks like

S45 =

∫

d4xe[F (T ) + Lm], (4.54)

where e = det (ei
µ) =

√−g and the torsion scalar T is defined as

T = v + Ts = v + ε2Sρ
µν T ρ

µν . (4.55)

Here

T ρ
µν ≡ −e

ρ
i

(

∂µei
ν − ∂νei

µ

)

, (4.56)

Kµν
ρ ≡ −1

2
(Tµν

ρ − T νµ
ρ − Tρ

µν) , (4.57)

Sρ
µν ≡ 1

2

(

Kµν
ρ + δµ

ρ T θν
θ − δν

ρT θµ
θ

)

. (4.58)

For a spatially flat FRW metric (3.18), we have the torsion scalar in the form

T = v + Ts = v + 6ε2H
2. (4.59)

The action (4.54) can be written as

S45 =

∫

dtL45, (4.60)

where the point-like Lagrangian reads

L45 = a3[F − (T − v)FT + Lm] + 6ε2FT aȧ2. (4.61)

So finally we get the following equations of the M45 - model:

E1FT + KF = −2a3ρ,

B2FTT + B1FT + MF = 6a2p, (4.62)

ρ̇ + 3H(ρ + p) = 0.

Here

E1 = 12ε2aȧ2 + a3vȧȧ, (4.63)

K = −a3 (4.64)

and

B2 = 12ε2Ṫ aȧ + a3Ṫ vȧ, (4.65)

B1 = 24ε2ȧ
2 + 12ε2aä + 3a2ȧvȧ + a3v̇ȧ − a3va, (4.66)

M = −3a2. (4.67)

If we put v = 0 then the M45 - model reduces to the usual F (Ts) gravity, where Ts = 6ε2H
2. As

is well-known the equations of F (Ts) gravity are given by

12H2FT + F = ρ, (4.68)

48H2FTT Ḣ − FT

(

12H2 + 4Ḣ
)

− F = p, (4.69)

ρ̇ + 3H(ρ + p) = 0, (4.70)

where we must put T = Ts. Finally we note that it is well-known that the standard F (Ts) gravity
is not local Lorentz invariant [33]. In this context, we have a very meager hope that the M45 -
model (4.54) is free from such problems.
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5 Cosmological solutions

In this section we investigate cosmological consequences of the F (R, T ) gravity. As example, we
want to find some exact cosmological solutions of the M37 - gravity model. Since its equations are
very complicated we here consider the simplest case when

F (R, T ) = µR + νT, (5.1)

where µ and ν are some constants. Then equations (4.37) take the form

µD1 + νE1 + K(νT + µR) = −2a3ρ,

µA1 + νB1 + M(νT + µR) = 6a2p, (5.2)

ρ̇ + 3H(ρ + p) = 0,

where

D1 = 6ε1a
2ä + a3uȧȧ, (5.3)

E1 = 12ε2aȧ2 + a3vȧȧ, (5.4)

K = −a3, (5.5)

A1 = 12ε1ȧ
2 + 6ε1aä + 3a2ȧuȧ + a3u̇ȧ − a3ua, (5.6)

B1 = 24ε2ȧ
2 + 12ε2aä + 3a2ȧvȧ + a3v̇ȧ − a3va, (5.7)

M = −3a2. (5.8)

We can rewrite this system as

3σH2 − 0.5(ȧzȧ − z) = ρ,

−σ(2Ḣ + 3H2) + 0.5(ȧzȧ − z) +
1

6
a(żȧ − za) = p, (5.9)

ρ̇ + 3H(ρ + p) = 0,

where z = µu + νv, σ = µε1 − νε2. This system contents two independent equations for five
unknown functions (a, ρ, p, u, v). But in fact it contain 4 unknown functions (H, ρ, p, z). The
corresponding EoS parameter reads as

ω =
p

ρ
= −1 +

−2σḢ + 1

6
a(żȧ − za)

3σH2 − 0.5(ȧzȧ − z)
. (5.10)

Let us find some simplest cosmological solutions of the system (5.9).

5.1 Example 1

We start from the case σ = 0. In this case the system (5.9) takes the form

−0.5(ȧzȧ − z) = ρ,

0.5(ȧzȧ − z) +
1

6
a(żȧ − za) = p, (5.11)

ρ̇ + 3H(ρ + p) = 0.

At the same time the EoS parameter becomes

ω =
p

ρ
= −1 − a(żȧ − za)

3(ȧzȧ − z)
. (5.12)

Now we assume that
z = κal, (5.13)

where κ and l are some real constants. Then

ω = −1 − l

3
. (5.14)

This result tells us that in this case our model can describes the accelerated expansion of the
Universe for some values of l.
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5.2 Example 2

Now consider the de Sitter case that is H = H0 = const so that a = a0e
H0t. Then the system

(5.9) reads as

3σH2

0
− 0.5(ȧzȧ − z) = ρ,

−3σH2

0
+ 0.5(ȧzȧ − z) +

1

6
a(żȧ − za) = p, (5.15)

ρ̇ + 3H(ρ + p) = 0.

The EoS parameter takes the form

ω =
p

ρ
= −1 +

a(żȧ − za)

18σH2

0
− 3(ȧzȧ − z)

. (5.16)

If z has the form (5.13) that is z = κeH0lt then we have

ω =
p

ρ
= −1 − lκ

18σH2

0
e−H0lt + 3κ

. (5.17)

If H0l > 0 then as t → ∞ we get again

ω = −1 − l

3
, (5.18)

which is same as equation (5.14). This last equation tells us that our model can describes the
accelerated expansion of the Universe e.g. for l ≥ 0. Also it corresponds to the phantom case if
l > 0. Finally we present other forms of the generalized Friedmann equations in the system (5.9).
Let us rewrite these equations in the standard form as

3H2 = ρ + ρz, (5.19)

−(2Ḣ + 3H2) = p + pz. (5.20)

Here

ρz = 0.5σ−1(ȧzȧ − z), (5.21)

pz = −0.5σ−1(ȧzȧ − z) − 1

6σ
a(żȧ − za) (5.22)

are the z or u − v contributions to the energy density and pressure, respectively.

6 Conclusion

In [30], Buchdahl proposed to replace the Einstein-Hilbert scalar Lagrangian R with a function of
the scalar curvature. The resulting theory is nowadays known as F (R) gravity. Almost 40 years
later, Bengochea and Ferraro proposed to replace the TEGR that is the torsion scalar Lagrangian
T with a function F (T ) of the torsion scalar, and studied its cosmological consequences [31]. This
type of modified gravity is nowadays called as F (T ) gravity theory. These two gravity theories
[that is F (R) and F (T )] are, in some sense, alternative ways to modify GR. From these results
arises the natural question: how we can construct some modified gravity theory which unifies F (R)
and F (T ) theories? Examples of such unified curvature-torsion theories were proposed in [10]-[11].
Such type of modified gravity theory is called the F (R, T ) gravity. In this F (R, T ) gravity, the
curvature scalar R and the torsion scalar T play the same role and are dynamical quantities. In
this paper, we have shown that the F (R, T ) gravity can be derived from the geometrical point of
view. In particular, we have proposed a new method to construct particular models of F (R, T )
gravity. As an example we have considered the M43 - model, deriving its action in terms of the
curvature and torsion scalars. Then in detail we have studied the M37 - model and presented its
action, Lagrangian and equations of motion for the FRW metric case. Finally we have shown that
the last model can describes the accelerated expansion of the Universe.
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Concluding, we would like to note that in the paper, we present a special class of extended
gravity models depending on arbitrary function F (R, T ), where R is the Ricci scalar and T the
scalar torsion. While in the traditional Eistein-Cartan theory, the role of the torsion depends on
the non trivial source associated with spin matter density, in our F (R, T ) gravity models, the
torsion can propagate without the presence of spin matter density. In fact this is a crucial point,
otherwise the additional scalar torsion degree of freedom are not different from the additional
metric gravitational degree of freedom present in extended F (R) models. Finally we would like to
note that all results of this paper are new and different than results of our previous papers [10]-[11]
on the subject.
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